Decomposition principle for linear fractional functional programs
نویسندگان
چکیده
منابع مشابه
Decomposition principle for linear fractional functional programs
© AFCET, 1968, tous droits réservés. L’accès aux archives de la revue « Revue française d’informatique et de recherche opérationnelle » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente...
متن کاملDecomposition theorems for linear programs
It is well known that any feasible arc-flow solution to a network problem defined on a graph G = (N,A), where N is the set of nodes whereas A is the set of arcs, can be expressed using at most |A| + |N | paths and cycles having nonzero flow, out of these, at most |A| cycles. This existence theorem is used in a number of proofs establishing the complexity of strongly polynomial algorithms for ne...
متن کاملVector Space Decomposition for Linear Programs
This paper describes a vector space decomposition algorithmic framework for linear programming guided by dual feasibility considerations. The resolution process moves from one basic solution to the next according to an exchange mechanism which is defined by a direction and a post-evaluated step size. The core component of this direction is obtained via the smallest reduced cost that can be achi...
متن کاملOn Solving Fully Fuzzified Linear Fractional Programs
In an earlier work [Pop and Stancu Minasian, 2008], we proposed a method of solving the fully fuzzified linear fractional programming (FFLFP) problem. In this paper, we propose another method of solving the FFLFP problem. First, analogically using the Charnes-Cooper method, we transform the linear fractional programming problem into a linear one. Next, problem of maximizing a function with tria...
متن کاملThe Decomposition Principle and Algorithms for Linear Programming
The computational difficulties that continue to plague decomposition algorithms, namely, “long-tail” convergence and numerical instabilities, have served to dampen enthusiasm about their computational effectiveness. The use of interior points of subproblems in decomposition procedures may have a significant role to play in alleviating such computational difficulties. Indeed, Dantzig-Wolfe decom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revue française d'informatique et de recherche opérationnelle
سال: 1968
ISSN: 0035-3035
DOI: 10.1051/m2an/196802r200651